The Olfactory Bulb: A Metabolic Sensor of Brain Insulin and Glucose Concentrations via a Voltage-Gated Potassium Channel.
نویسندگان
چکیده
The voltage-gated potassium channel, Kv1.3, contributes a large proportion of the current in mitral cell neurons of the olfactory bulb where it assists to time the firing patterns of action potentials as spike clusters that are important for odorant detection. Gene-targeted deletion of the Kv1.3 channel, produces a "super-smeller" phenotype, whereby mice are additionally resistant to diet- and genetically-induced obesity. As assessed via an electrophysiological slice preparation of the olfactory bulb, Kv1.3 is modulated via energetically important molecules - such as insulin and glucose - contributing to the body's metabolic response to fat intake. We discuss a biophysical characterization of modulated synaptic communication in the slice following acute glucose and insulin stimulation, chronic elevation of insulin in mice that are in a conscious state, and induction of diet-induced obesity. We have discovered that Kv1.3 contributes an unusual nonconducting role - the detection of metabolic state.
منابع مشابه
Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel.
The olfactory bulb has recently been proposed to serve as a metabolic sensor of internal chemistry, particularly that modified by metabolism. Because the voltage-dependent potassium channel Kv1.3 regulates a large proportion of the outward current in olfactory bulb neurons and gene-targeted deletion of the protein produces a phenotype of resistance to diet-induced obesity in mice, we hypothesiz...
متن کاملMitral Cells of the Olfactory Bulb Perform Metabolic Sensing and Are Disrupted by Obesity at the Level of the Kv1.3 Ion Channel
Sixty-five percent of Americans are over-weight. While the neuroendocrine controls of energy homeostasis are well known, how sensory systems respond to and are impacted by obesity is scantily understood. The main accepted function of the olfactory system is to provide an internal depiction of our external chemical environment, starting from the detection of chemosensory cues. We hypothesized th...
متن کاملElectrophysiological and behavioral phenotype of insulin receptor defective mice.
The olfactory bulb expresses one of the highest levels of insulin found in the brain. A high level of expression of the concomitant insulin receptor (IR) kinase is also retained in this brain region, even in the adult. We have previously demonstrated in a heterologous system that insulin modulates the voltage-dependent potassium channel, Kv1.3, through tyrosine phosphorylation of three key resi...
متن کاملModulation of olfactory bulb neuron potassium current by tyrosine phosphorylation.
Insulin causes a suppression of whole-cell voltage-dependent outward current in cultured neurons from the rat olfactory bulb. This suppression is time-dependent; it is mimicked by application of Src tyrosine kinase inside the cell via the whole-cell patch electrode or by treatment of the olfactory bulb neurons with the tyrosine phosphatase inhibitor pervanadate. The C-type inactivation properti...
متن کاملThe incretin hormone glucagon‐like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage‐dependent potassium channel
KEY POINTS The gut hormone called glucagon-like peptide 1 (GLP-1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain. GLP-1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP-synthesizing cells in the olfactory bulb. GLP-1 increases the firing frequency of neurons (mitral cells) tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Results and problems in cell differentiation
دوره 52 شماره
صفحات -
تاریخ انتشار 2010